## Exercise 20

Find the projection of $\mathbf{u}=-\mathbf{i}+\mathbf{j}+\mathbf{k}$ onto $\mathbf{v}=2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$.

## Solution

The dot product of $\mathbf{u}$ and $\hat{\mathbf{v}}$ represents the component of $\mathbf{u}$ in the direction of $\mathbf{v}$.

$$
\begin{aligned}
\mathbf{u} \cdot \hat{\mathbf{v}} & =\mathbf{u} \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|} \\
& =\frac{(-\mathbf{i}+\mathbf{j}+\mathbf{k}) \cdot(2 \mathbf{i}+\mathbf{j}-3 \mathbf{k})}{\sqrt{2^{2}+1^{2}+(-3)^{2}}} \\
& =\frac{(-1)(2)+(1)(1)+(1)(-3)}{\sqrt{14}} \\
& =-\frac{4}{\sqrt{14}}
\end{aligned}
$$

Multiply this result by a unit vector in the direction of $\mathbf{v}$ to obtain the desired projection.

$$
\begin{aligned}
(\mathbf{u} \cdot \hat{\mathbf{v}}) \hat{\mathbf{v}} & =(\mathbf{u} \cdot \hat{\mathbf{v}}) \frac{\mathbf{v}}{\|\mathbf{v}\|} \\
& =\left(-\frac{4}{\sqrt{14}}\right) \frac{2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}}{\sqrt{2^{2}+1^{2}+(-3)^{2}}} \\
& =\left(-\frac{4}{\sqrt{14}}\right) \frac{2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}}{\sqrt{14}} \\
& =-\frac{2}{7}(2 \mathbf{i}+\mathbf{j}-3 \mathbf{k})
\end{aligned}
$$

